以商業用及超順磁活性氧化鋁吸附處理陰離子溶液以商業用及超順磁活性氧化鋁吸附處理陰離子溶液

本研究以商業用的活性氧化鋁(γ-Al2O3)和以溶膠凝膠法(sol-gel method)合成之修飾磁性氧化鋁(modified magnetic alumina via sol-gel method, MMASG)兩種鋁型吸附劑吸附處理含F-、Cl-、Br-、NO3-和SO42-水溶液。γ-Al2O3活化時採用0.01 N NaOH 再生及3.16×10-4 N HNO3 (稱為γ-Al2O3-N) 或HClO4 (稱為γ-Al2O3-P)中和至pH值等於4。究內容包含了吸附劑之物理化學特性鑑定分析、等溫吸附行為、完全攪拌槽吸附動力分析、小型管柱吸附動力實驗等。此外,亦針對操作因子如pH值和陰離子初始濃度等對處理效果之影響進行探討。以共沉澱法製備奈米級Fe3O4超順磁性顆粒;並以緩慢加酸法(參考林(2004) 之合成方法進行部份修正)於Fe3O4表面包覆SiO2,得到SiO2/Fe3O4磁性載體;再以溶膠凝膠法於磁性載體表面合成氧化鋁,可製備得修飾磁性氧化鋁吸附劑。Fe3O4、磁性載體及MMASG之飽和磁化強度分別為59.24、8.5和8.269 emu/g,皆具有超順磁性。X射線繞射(x-ray diffraction, XRD) 之鑑定結果顯示MMASG表面之鋁氧化物為三羥氧化鋁(bayerite)結構。等溫吸附試驗之結果顯示以Langmuir與Freundlich等溫吸附方程式皆能有效的描述氧化鋁 (γ-Al2O3-N)、MASG (林(2004)所合成之磁性氧化鋁)和MMASG (本研究所合成之修飾磁性氧化鋁)等三種吸附劑吸附強鍵結的氟離子在鋁表面的行為。單就單層飽和吸附量(qL)而言,MMASG為本研究中所使用三種吸附劑中對氟離子吸附效果最佳者。對於弱建結之Cl-、Br-、NO3-和SO42- 離子,Langmuir等溫吸附方程式也可描述良好。 假性二階動力程序(pseudo-second-order equation)及Elovich rate equation可有效的模擬γ-Al2O3-P 和MMASG於完全混合反應槽(completely stirred tank reactor, CSTR)中對含F-、Cl-、Br-、NO3-和SO42-離子之吸附動力。小型γ-Al2O3-P管柱吸附貫穿實驗以 Yoon and Nelson 方程式描述半導體產業廢水中的個別五種單離子,皆有良好的適用性。所求得之參數值期望可用來評估應用於實廠廢水之吸附行為。以小型管柱吸附貫穿實驗模擬半導體實廠廢水(實驗條件為配製含 F- 、Cl-、Br-、NO3- 和 SO42-值為 54、2.2、1.1、10 和2 mg/L而初始pH值為4之水溶液)之吸附去除效果。結果顯示γ-Al2O3-P吸附可有效去除半導體廢水中之氟離子;對於弱鍵結之陰離子(如:Cl-、Br-及NO3-)而言,其吸附去除效果較差。則須進一步評估。雖然MMASG因為顆粒很小不適用於管柱吸附,但由於MMASG與γ-Al2O3-N之等溫吸附平衡參數值比較,顯示MMASG對於強鍵結之氟離子及弱鍵結之陰離子之去除效果與γ-Al2O3-N在定性上一致。

作者:王曉娟